Знакомство с фигурами имеющими ось симметрии

Фигуры, имеющие ось симметрии. 1-й класс ("Начальная школа XXI века")

знакомство с фигурами имеющими ось симметрии

на рисунках фигуры, имеющие ось симметрии, и в окружающем мире объекты, имеющие ось Технологическая карта урока – Прямоугольник. Ось симметрии фигуры. . Знакомство с симметрией вокруг нас. 2 Какие фигуры имеют одновременно: центр и ось симметрии? №3 Выписать буквы, имеющие а) 1 ось симметрии (вертикальную по теме " Симметрия" для учеников 5 -го класса-знакомство на примерах из. Симметрия - первое знакомство. рис. Нам понадобится умение находить у плоской фигуры оси симметрии, а у тела - плоскости симметрии. картинка.

Мы продолжаем знакомство с многогранниками. Вам уже известны такие многогранники как: В курсе планиметрии вы рассматривали симметрию фигур относительно точки и относительно прямой. Напомню, что точки D и D1 симметричны относительно точки О- называемой центром симметрии, если О- середина отрезка DD1.

Точки D и D1 симметричны относительно прямой а- называемой осью симметрии, если прямая а перпендикулярна отрезку DD1и проходит через его середину. Аналогично, любая точка прямой а симметрична сама. В курсе стереометрии рассматривается симметрия относительно точки-центра симметрии, симметрия относительно прямой-оси симметрии и симметрия относительно плоскости, называемой плоскостью симметрии. Итак, точки D и D1 симметричны относительно плоскости симметрии альфа, если эта плоскость перпендикулярна этому отрезку и проходит через его середину.

Любая точка плоскости симметрии симметрична сама. Других порядков осей симметрии, поворот вокруг которых переводил бы решетку кристалла саму в себя, в классической кристаллографии не существует. Запрещены также и оси выше 6-го порядка, так как их существование в кристалле несовместимо с представлением о трансляционной симметрии. Вещества могут иметь самые разнообразные сочетания разрешенных осей симметрии.

Например, в то время как хлористый цезий CsCl простая кубическая решетка имеет три оси 4-го порядка, четыре оси 3-го порядка и шесть осей 2-го порядка, у кианита Al2SiO5 вообще нет осей симметрии.

Трансляционная и поворотная симметрии порождают важное понятие дальнего порядка, который бывает двух типов - дальний трансляционный порядок и дальний ориентационный порядок. Порядок симметрии В XX веке предпринимались неоднократные попытки расширить традиционные схемы кристаллического порядка симметрии и ввести понятие не совсем "правильных" или "почти" периодических кристаллов.

Чтобы понять возникавшие при этом трудности, обратимся к запрещенной в классической кристаллографии оси симметрии 5-го порядка. Если для простоты рассматривать двухмерную решетку, то осью симметрии 5-го порядка обладают правильные пятиугольники, которые не могут быть элементарными ячейками кристалла, поскольку в противоположность правильным треугольникам, шестиугольникам и квадратам их нельзя на плоскости подогнать друг к другу плотно, без зазоров.

Остающееся свободное пространство называют несогласованием. Именно несогласование и оказывается камнем преткнове ния для осей симметрии 5-го, 7-го и более высоких порядков.

Симметриям, содержащим мотивы осей 5-го порядка, долгое время не уделялось должного внимания, так как считалось, что на атомно-молекулярном уровне соответствующие образования в неживой природе не реализуются.

Каково же было удивление кристаллографов и физиков, когда неожиданно в печати появилась работа группы Д. Шехтмана об открытии сплава алюминия с марганцем с необычными свойствами. Он имел структуру похожую на кристалл, но им не являлся, так как обладал вращательной симметрией 5-го порядка.

Металлический сплав Al86Mn14 создавался быстрым охлаждением расплава со скоростью около 1 млн градусов в секунду. Электронограмма полученного образца показывала резкие регулярные максимумы, обладавшие поворотной симметрией 5-го порядка! Обнаруженная структура, названная впоследствии шехтманитом, казалась парадоксальной. Наличие резких дифракционных максимумов свидетельствовало об упорядоченном расположении атомов в структуре, характерной для кристаллов, а наличие наблюдавшейся оси симметрии 5-го порядка противоречило фундаментальным представлениям классической кристаллографии и говорило о том, что исследуемое вещество не кристалл!

Некоторое время спустя было обнаружено и синтезировано множество аналогичных структур, состоящих, как правило, из атомов металлов и иногда кремния, названных квазикристаллами 1. Каждый год появляются сообщения и о новых по составу квазикристаллах, и о новых вариантах структур, существование которых ранее нельзя было даже предположить. К настоящему времени в большинстве синтезированных квазикристаллов обнаружены оси симметрии 5-го, 7-го, 8-го, го, го и еще более высоких порядков, запрещенные для идеальных кристаллов.

Самое большое удовольствие от феномена "кристаллографической катастрофы" получили те, кто пытался бороться с запретом на ось симметрии 5-го порядка и кто был хорошо знаком со всем объемом накопленного к тому времени теоретического материала. Расчеты показывали, что существование структур с осью 5-го порядка возможно, но они допускались только для ультрадисперсных сред с размером металлических частиц в области от 1 до нм.

Образование бoльших частиц связывали с возникновением пустот или упругих внутренних деформаций. Полагали, что существует критический размер, выше которого пятиугольные структуры становятся менее стабильными, чем кристаллические.

Теоретики не зря тратили время, обдумывая, какими могут быть нетрадиционные структуры, так как уже через год после открытия шехтманита появились его теоретические модели. Для наглядности основные идеи этих теоретических моделей рассмотрим на одномерных и двухмерных структурах. Цепочки и мозаики Вначале рассмотрим следующую идеализированную модель.

  • Методическая разработка по теме " Ось симметрии фигуры"
  • Урок-обобщение по теме "Симметрия".
  • Симметрия и ее применение при решении задач в 6-м классе

Пусть в равновесном состоянии частицы расположены вдоль оси переноса z и образуют линейную цепочку с переменным периодом, изменяющимся по закону геометрической прогрессии: Построенная цепочка частиц служит примером одномерного квазикристалла с дальним порядком симметрии. Структура абсолютно упорядочена, наблюдается систематичность в расположении частиц на оси - их координаты определяются одним законом.

знакомство с фигурами имеющими ось симметрии

Вместе с тем нет повторяемости - периоды между частицами различны и все время возрастают. Поэтому полученная одномерная структура не обладает трансляционной симметрией, и вызвано это не хаотическим расположением частиц как в аморфных структураха иррациональным отношением двух соседних периодов D - число иррациональное.

Логическим продолжением рассмотренной одномерной структуры квазикристалла служит двухмерная структура, которую можно описать методом построения непериодических мозаик узоровсостоящих из двух различных элементов, двух элементарных ячеек. Такую мозаику разработал в году физик-теоретик из Оксфордского университета Р.

Разработка урока математики в 5 классе "Прямоугольник. Ось симметрии фигуры", ФГОС

Он нашел мозаику из двух ромбов с равными сторонами. Корни этих квадратных уравнений можно записать в тригонометрическом виде: Такой нетрадиционный вид представления корней уравнений показывает, что эти ромбы можно назвать узким и широким золотыми ромбами.

В мозаике Пенроуза плоскость закрывается золотыми ромбами без пропусков и перекрытий, и ее можно беспредельно расстилать в длину и ширину.

знакомство с фигурами имеющими ось симметрии

Но для построения бесконечной мозаики надо соблюдать определенные правила, существенно отличающиеся от однообразного повторения одинаковых элементарных ячеек, составляющих кристалл. Если правило подгонки золотых ромбов нарушить, то через некоторое время рост мозаики прекратится, так как появятся неустранимые несогласования. В бесконечной мозаике Пенроуза золотые ромбы располагаются без строгой периодичности.

Поскольку число D иррациональное, в подобной мозаике нельзя выделить элементарную ячейку с целым числом ромбов каждого вида, трансляцией которой можно было бы получить всю мозаику.

Мозаика Пенроуза имеет свою особую прелесть и как объект занимательной математики. Не вдаваясь во все аспекты этого вопроса, отметим, что даже первый шаг - построение мозаики - достаточно интересен, так как требует внимания, терпения и определенной сообразительности. А уж массу выдумки и фантазии можно проявить, если сделать мозаику разноцветной.

Фигуры, имеющие ось симметрии. 1-й класс ("Начальная школа XXI века")

Раскраску, превращающуюся сразу в игру, можно выполнить многочисленными оригинальными способами, варианты которых представлены на рисунках внизу. Мозаика Пенроуза - великолепный пример того, как красивое построение, находящееся на стыке различных дисциплин, обязательно находит себе применение. Если узловые точки заменить атомами, мозаика Пенроуза станет хорошим аналогом двухмерного квазикристалла, так как имеет много свойств, характерных для такого состояния вещества.

Во-первых, построение мозаики реализуется по определенному алгоритму, вследствие чего она оказывается не случайной, а упорядоченной структурой. Любая ее конечная часть встречается во всей мозаике бесчисленное множество. Во-вторых, в мозаике можно выделить много правильных десятиугольников, имеющих совершенно одинаковые ориентации. Они создают дальний ориентационный порядок, названный квазипериодическим. Это означает, что между удаленными структурами мозаики существует взаимодействие, которое согласовывает расположение и относительную ориентацию ромбов вполне определенным, хотя и неоднозначным способом.

знакомство с фигурами имеющими ось симметрии

В-третьих, если последовательно закрасить все ромбы со сторонами, параллельными какому-либо выбранному направлению, то они образуют серию ломаных линий.

Вдоль этих ломаных линий можно провести прямые параллельные линии, отстоящие друг от друга приблизительно на одинаковом расстоянии. Благодаря этому свойству можно говорить о некоторой трансляционной симметрии в мозаике Пенроуза. Направления этих ломаных линий соответствуют направлениям сторон правильного пятиугольника. Поэтому мозаика Пенроуза имеет в какой-то степени поворотную симметрию 5-го порядка и в этом смысле подобна квазикристаллу.

Мозаика Пенроуза - модель квазикристалла Итак, модель квазикристалла может быть создана на основе мозаики Пенроуза с двумя "элементарными ячейками", соединенными друг с другом по определенным правилам стыковки.

Эти специальные правила намного сложнее, чем примитивное транслирование одинаковых ячеек в классических кристаллах. Модель Пенроуза хорошо описывает некоторые основные свойства квазикристаллов, но недостаточно объясняет реальные процессы их атомного роста, носящие явно нелокальный характер.

знакомство с фигурами имеющими ось симметрии

Существуют и другие теоретические модели, так или иначе пытающиеся разрешить споры ученых о природе квазикристаллических структур. Однако в большинстве публикаций изящные мозаики Пенроуза с двумя и более фигурами признаются наиболее правильным ключом к пониманию структуры квазикристаллов.

В настоящее время разработано и трехмерное обобщение мозаики Пенроуза, составляемой из узкого и широкого ромбоэдров, шестигранных фигур, каждая грань которых - ромб. Такая пространственная мозаика обладает икосаэдрической симметрией. Является ли прямая на рисунке осью симметрии прямоугольника? Давайте закроем глаза и представим, что мы идем по осеннему лесу, а под ногами разноцветный ковер. Глядите — красный фонарик, поднимаете — это листок уронила осинка; а у пруда милая ивушка рассыпала золотистые рыбки — листочки — узкие, длинные, тонкие; дальше — желтая звездочка — подарил ее клен.

Давайте поднимем листочек клена. Показ осеннего листа клена Говорят, что кленовый лист симметричен — имеет единственную ось симметрии. Если его перегнуть по этой оси, то обе части листа совпадут. Показ Назовите еще растения, листья которых имеют ось симметрии.

Вот подул ветер, и с неба посыпались снежинки.

знакомство с фигурами имеющими ось симметрии

Кружатся в воздухе и падают на землю — одна красивее другой! Вот цветок с шестью лепестками, вот звездочка с шестью лучами, вот тончайшая пластинка с шестью гранями! Беззвучно летят они в тихом воздухе над землей и падают. Снежинки плывут, покачиваются, отыскивая себе дорогу на землю, так как им мешает невидимый воздух. Хорошо прогуляться зимним днем в лесу! Посмотрите на эту снежинку.